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Abstract— In this paper we consider the problem of blind
source separation (BSS) in the wavelet domain. We propose a
Bayesian estimation framework for the problem where different
models of the wavelet coefficients are considered: the Independent
Gaussian Mixture (IGM) model, the Hidden Markov Tree (HMT)
model and the Contextual Hidden Markov Field (CHMF) model.
For each of the three models we give expressions of the posterior
laws and propose appropriate Markov Chain Monte Carlo
(MCMC) algorithms in order to perform unsupervised joint blind
separation of the sources and estimation of the mixing matrix
and hyper parameters of the problem.

Indeed, in order to achieve an efficient joint separation and
denoising procedures in the case of high noise level in the data,
a slight modification of the exposed models is presented: the
Bernoulli Gaussian (BG) mixture model, which is equivalent to
a hard thresholding rule in denoising problems. A number of
simulations are presented in order to highlight the performances
of the aforementioned approach: i) in both high and low signal to
noise ratios. ii) comparing the results with respect to the choice
of the wavelet basis decomposition.

I. INTRODUCTION

Blind source separation (BSS) has been an active area
of research these last two decades [1], [2], [3], [4]. Many
encountered problems can be reasonably viewed as being blind
source separation problems [4]. One of the most developed
solutions to the problem is Independent Component Analysis
(ICA) [1], [4]. It consists mainly in finding independent
components that may represent the unobserved sources. This
method has assessed its performances in many applications.
However, the basic ICA model does not explicitly account for
any observation noise or model errors. Nevertheless, it is by
far a fast method of source separation for exact instantaneous
mixing and noise free models.

To account for noise or model uncertainties, higher order
statistics based methods have been considered as in [5].
However, such methods do account for Gaussian noise only
and suffer from outliers. Cao et al. in [6] developed a nonlinear
ICA solution robust to outliers with a pre-whitening primary
step that accounts for observation noise. In order to account
for time structure of the source signals, extensions to basic
ICA approaches have been considered: in [7], [8], [9] joint
diagonalization of time delayed second order matrices have
been considered whereas in [10] diagonalization of higher
order statistics have been considered. This is an extension of
the JADE [11] implementation of ICA, combining high order
statistics to time delayed correlation matrices to be more robust
to noise and to account for time coherence.

In this paper, we consider Bayesian estimation framework
for the BSS problem [12], [13], [14]. Bayesian estimation is a

natural and hierarchical way of deriving posterior distributions
through appropriate assignment of:

• priors (prior models for all the unknown parameters)
translating any prior knowledge one may have,

• likelihood describing statistically the observational (for-
ward) model through assumptions made on the noise or
model uncertainties.

In that context, Rowe in [12] considered Gaussian priors for
sources re-deriving thus the Factor Analysis (FA) solution
to the problem. Snoussi et al. in [15] and Choudrey et al.
in [16] considered a mixture of Gaussians prior leading to
efficient joint segmentation and separation solutions for 2D
BSS problems.

These methods have been considered in the direct (obser-
vations) domain in contrast to other transform based methods
such as time-frequency [17] and wavelets [18], [19]. Transform
domain methods rely on the fact that usually linear and invert-
ible transforms rearrange the data, leaving them a structure
simpler to model.

In this paper, we transport the BSS problem to the wavelet
domain where the parsimonious property of the wavelet trans-
form helps us to assign appropriate priors for the wavelet coef-
ficients of the sources. Wavelet domain Bayesian blind source
separation (wavelet Bayes-BSS) has already been considered
in [18], [19] with generalized exponential prior models for
source wavelet coefficients. These particular models present,
however, some optimization difficulties.

Crouse et al. [20], in a wavelet based denoising problem,
proposed to model the wavelet coefficients by a two Gaussians
mixture prior model which captures efficiently the wavelet
transform properties of a wide class of signals. Being a mixture
of Gaussians, this prior model remains tractable (conditional
linear posterior estimates) while keeping good approximation
characteristics.

Based on the Gaussians mixture prior, we consider three
different models for the wavelet coefficients of the unobserved
sources: i) A first model assuming independence across and
through the wavelet decomposition scales, the Independent
Gaussians Mixture (IGM) model. ii) A second model, pro-
posed by Crouse et al. in [20], that accounts for an inter
scale correlation between the wavelet coefficients on a quad
tree representation. This correlation is expressed through a
first order Markov chain model, the Hidden Markov Tree
(HMT) model. iii) A third prior model that we propose based
on hidden Markov fields, accounts for inter and intra-scale
correlations, the Contextual Hidden Markov Field (CHMF)
model. It is also based on a quad tree representation. A
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comparison of these three models in Bayesian BSS is also
presented.

In order to be able to perform blind source separation
for high noisy mixture observations, an additional constraint
on the two Gaussians mixture prior distribution must be
considered. In [21], [22], [23] close connections between
hard/soft thresholding and wavelet based Bayesian denoising
have been established in the case of generalized exponential
prior distributions. Pesquet et al. in [24] established similar
relations for Bernoulli-Gaussian (BG) mixture prior models.
The Bernoulli-Gaussian mixture distribution is in fact no more
than a limiting case of the two Gaussians mixture model
presented in [20]. This will enable us to implement, with no
major modification of the estimation routines developed for
the two Gaussians mixture prior, an efficient joint separation
denoising procedure in the case of high noise level affected
observations blind source separation problems.

With the particular choice of the presented prior distri-
butions, conditional posterior distributions of the unknown
parameters (unobserved sources, mixing matrix, noise variance
and hyperparameters) are explicit and particularly easy to
sample. This offers the ability to implement efficient and sim-
ple Markov Chain Monte Carlo (MCMC) algorithms through
Gibbs sampling for the optimization part. In that context and
in order to be able to properly sample the hidden variables
corresponding to the three different prior models, conditional
distributions of the hidden variables have been re-derived for
the wavelet tree representation: two algorithms presented in
[25] for sampling 1D hidden Markov variables are extended
for the 2D quad tree hidden variables of the wavelet coeffi-
cients.

This paper is organized as follows: In section II we
introduce the blind source separation (BSS) problem and
briefly present the main classical solutions to the problem.
In section III we present the Bayesian formulation of the
blind source separation (Bayes-BSS) problem and describe
the prior assignment of the unknown parameters: the noise
variance, the mixing matrix and the unobservable sources. In
section IV-A we briefly introduce the wavelet transform used
in our approach. Through a description of the main properties
of the wavelet coefficients of signals (especially 2D signals)
we define, in details, the different prior models we will use
for the wavelet based Bayes-BSS in section IV-C, IV-D and
section IV-E. The expressions of the conditional posteriors are
detailed in section V for the MCMC algorithm. In section
VI a simple procedure is presented in order to perform a
joint source separation and denoising in the case of high
noisy observations. We then conclude this work by presenting
some simulation examples and comparisons in section VII and
a conclusion in section VIII. Appendix A, B and C detail
sampling schemes corresponding to the different prior models
of section IV-C, IV-D and section IV-E.

II. CLASSICAL BSS SOLUTIONS

Blind source separation (BSS) consists of recovering unob-
served sources from a set of their linear and instantaneous

mixtures, generally described by:

x(k) = As(k) + ε(k), (1)

where k can be a scalar index representing time, frequency,
wavelength (1D cases), or a vector index representing pixels
positions, time-frequency, time-scale (2D cases). In the follow-
ing, we refer to k as ”time” and to column vector dimension
as ”space”. x(k) is the m-column vector of the observed
mixtures data, s(k) is the n-column vector of the unobserved
sources, A is the (m × n) mixing matrix representing the
linear and instantaneous mixing process and ε(k) is the m-
column vector that represents an observation noise or model
error: all over this paper, it is assumed Gaussian, centered,
temporarily white and spatially independent, with a covariance
matrix Rε = diag

(

σ2
ε,1, . . . , σ

2
ε,m

)

. The model (1) can be
equivalently written in a matrix form:

X = AS + E, (1’)

where X,S and E are matrices with columns respectively
x(k), s(k) and ε(k) for k = 1, . . . ,K.

Classical source separation methods consider a noise free
observational model of the form:

x(k) = As(k), (2)

and try to find, by some nonlinear optimization criteria, a
separating matrix B (generally an estimation of the inverse
of A up to a permutation P and a scale indeterminacy D:
B = PDA−1). The sources are then estimated by:

y(k) = Bx(k). (3)

A. Principal Component Analysis (PCA)

If we consider second order stationary sources s(k) ∼
N (0,

�
n), ∀k, the distribution of the observations x(k) ac-

cording to the mixing model (2) is N (0,Σx = AA′) and the
distribution of y(k) is N (0,BΣxB′). Since y(k) = PDs(k)
then BΣxB′ =

�
n and a possible solution is:

B = Λ
−1/2U †, (4)

where (U ,Λ) are obtained by singular value decomposition
(SVD) of Σx. The PCA algorithm then starts by estimating
Σx from the observed data and then computing B using the
SVD. The principal component are then obtained by (3).

B. Independent Component Analysis (ICA)

ICA can be defined as the process of decomposing the
observations into mutually independent components. A funda-
mental measure of independence (to be minimized with respect
to B) is the mutual information given by:

I(y) =

∫

p(y) log
p(y)

∏

i p(yi)
dy

= −H(y) +
∑

i

H(yi), (5)

where H(.) is the differential entropy. Mutual information can
be equivalently written as:

I(y) = J(y) −
∑

i

J(yi) +
1

2
log

∏

i Σy(i, i)

|Σy|
, (6)
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where Σy is the covariance matrix of y and J(.) is the
negentropy which measures the distance of a distribution to
the Gaussian one. ICA based methods consist, generally, on
approximations of I(y) (or equivalently J(yi)) by high order
cumulants [1] or nonlinear functions [26].

C. Maximum likelihood source separation

The maximum likelihood solution to BSS begins by writ-
ing the probability distribution of the observations. The log
likelihood is given by:

L(B) = K ln |B| +
∑

i

∑

k

ln p(yi). (7)

Asymptotically, equation (7) reduces to:

lim
K→∞

1

K
L(B) = − ln |B| +

n
∑

i

E[ln p(yi)]

= −I(y) −H(x). (8)

Given that H(x) is constant, maximizing the likelihood is
equivalent to minimizing the mutual information given by
equation (5).

D. Time structure ICA

The ICA approach to the BSS problem has been further
extended in order to account for time evolution of the original
sources: in [17], the source separation problem has been
considered in the time-frequency domain (with the short
time Fourier transform) in order to account for time non-
stationarity. In [8], [7] and [9], joint diagonalization of time
delayed second order matrices have been considered in order
to find the separating (orthogonal) matrix. The algorithms
developed in [7] and [9] where respectively named SOBI
(Second Order Blind Identification) and TDSEP (Temporal
Decorrelation Source SEParation). As a further extension
of the JADE algorithm [11] (for Joint Approximate Diago-
nalization of Eigen matrices based on high order statistics:
cumulants), Müller in [10] considered a combination of the
JADE for high order statistics and the TDSEP algorithm for
second order correlations to develop the JADETD algorithm:
an efficient algorithm for BSS accounting for noise in the
observations.

III. BAYESIAN BLIND SOURCE SEPARATION (BAYES-BSS)

In a Bayesian estimation framework, we begin by writing
the posterior distribution of all the unknown parameters cor-
responding to the BSS problem of equation (1):

p(S,A,Rε,θ|X)

∝ p(X|S,A,Rε) π(S,A,Rε|θ)π(θ) , (9)

where p(X|S,A,Rε) is the likelihood function which, under
an independent and identically distributed (i.i.d.) Gaussian
noise, is given by:

p(X|S,A,Rε) =

K
∏

k=1

N (x(k)|As(k),Rε). (10)

π(S,A,Rε|θ) is the prior distribution and θ represents the
parameters needed to properly define the priors, commonly
called hyperparameters.

One of the most important steps in Bayesian estimation
consists of an appropriate assignment of this prior distribution.
We will first assume, that the parameters of interest are a priori
independent:

π(S,A,Rε|θ) = π(S|θs)π(A|θA) π(Rε|θε) . (11)

On the set of hyperparameters θ = [θs,θA,θε], only θs will be
inferred, the other hyperparameters set {θA,θε} will be fixed
once for all, reducing the number of unknown variables.

A. Noise variance prior distribution π(Rε|θε)

A conjugate Inverse Gamma prior distribution is chosen for
scale parameters [27]. The Inverse Gamma pdf is given by:

G−1(x) ∝
1

xν+1
exp

(

−
1

θx

)

�

[0,+∞[, (12)

having as its limiting distribution (ν = 0, θ → ∞) the non
informative Jeffrey’s prior: π(x) ∝ 1/x.

B. Mixing matrix prior distribution π(A|θA)

The prior distribution of the mixing matrix can be described
by the physical system inherent in the mixing process (translat-
ing positivity, discrete state information ...). In this paper, the
elements of the mixing matrix are considered a priori Gaussian
and independent:

π(ai,j) = N (µa
i,j , σ

2
a), (13)

where (i, j) ∈ {1, . . . ,m} ⊗ {1, . . . , n}.

C. Sources modeling and π(S|θs)

Sources prior distribution is clearly an important step in a
Bayesian solution to the BSS problem. Different models can
be considered:

1. The simplest ones are the temporal i.i.d. models of the
form:

π(si(1), . . . , si(K)|θs) =

K
∏

k

π(si(k)|θs) , (14)

with π(si(k)) either Gaussian (linear models as for the PCA
solution), or non Gaussian models, for instance the generalized
p-Gaussian distributions given by:

π(si(k)) ∝ exp(−γ|si(k)|
p) , 0 < p < 2 (15)

already considered in some wavelet based BSS as in [18], [28].
Mixture of L distributions of the form:

π
(

si(k)|p
i
1,...,L, θ

i
1,...,L

)

=

L
∑

l=1

pi
l fl

(

si(k)|θ
i
l

)

, (16)

with
∑L

l p
i
l = 1, has also been considered as in [14], [29],

[30], [15] with variational approximations in [14], [29], [30]
leading to efficient Bayes-BSS algorithms. Interpreting the
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weights pi
l as probabilities of hidden states zi

k associated to
the samples sk(i), we can rewrite equation (16) as:

π
(

si(k)|z
i
k, θ

i
1,...,L

)

=

L
∑

l=1

p
(

zi
k = l

)

fl

(

si(k)|θ
i
l

)

(17)

2. Time non stationarity can also be considered to enhance
the i.i.d models such as second order models of the form
N (µi

k , σ
i
k) where the time variation of (µi

k, σ
i
k) has to be

described [31], [32], [33].
Another interesting non stationary models widely consid-

ered in statistical signal processing are the hidden Markov
models (HMM) given by:

π
(

si(k)|z
i
k′∈ν(k), θ

i
1,...,L

)

=

L
∑

l=1

p
(

zi
k = l|zi

k′∈ν(k)

)

fl

(

si(k)|z
i
k = l, θi

l

)

, (18)

where zi
k’s are discrete random variables taking values in the

set ∈ {1, . . . , L}. The Markovian property is, in a general

manner, expressed by p
(

zi
k|z

i
k′∈ν(k)

)

, where ν(k) is a neigh-

borhood system of k. In [15], [34], [16], the f ′
ls were taken to

be Gaussian densities for a 2D Bayes-BSS problem. Indeed,
such prior models enabled to have some joint segmentation
and separation of the images, where the 2D gray scale images
are naturally segmented into L statistically distinct regions via
the label (hidden) variables zi

k’s.

IV. WAVELET DOMAIN STATISTICAL SIGNAL PROCESSING

Mixture densities of equation (17) have been extensively
used in statistical signal processing. However, in the direct
domain, the number of density functions (L) in the prior
Gaussians mixture model of equation (17) should be chosen
sufficiently large in order to achieve good approximation
properties. Another approach is to consider linear transforms
having some particular properties that rearrange the data
leaving them a structure simpler to model.

The wavelet transform is a sparse representation that trans-
forms the data rendering them interestingly simple to model:
It results, for a wide class of signals, into a large number of
small coefficients and a small number of large coefficients.
This has been our main motivation to adopt simple models
for the wavelet coefficients in a Bayesian source separation
problem: a two Gaussians mixture distribution (L = 2) with a
hidden Markov modeling. In the following, we briefly detail
the wavelet transform used and then we point out to the main
properties of the wavelet coefficients that justify the choice of
simple to more complex prior models.

A. The wavelet transform

Wavelets has emerged as an interesting tool for signal
processing in the last two decades1. The wavelet transform
belongs to the large family of time-frequency analysis. Its

1the first use of wavelets dates back to Haar [35]

particularity is that it analyses signals over variable shape
Heisenberg boxes on the time-frequency plane [36]. It is given
by:

Wf (s, u) =< f(t), ψs,u(t) >=

∫

f(t)ψs,u(t)dt, (19)

where ψs,u(t) = 1√
s
ψ( t−u

s ), ‖ψ(t)‖ = 1 and
∫

tpψ(t)dt = 0
for p = 0, . . . , P ; P being the number of vanishing moments
of ψ(t). We will not go deeper in the wavelet theory, the reader
could refer to [37], [36] for a detailed literature on the subject.
For a discrete time signal f [k], k = 1, . . . ,K, the fast wavelet
transform (FWT) [38] algorithm is given by:

aj [k] = (aj−1 ~ h̄)[2k − 1],
dj [k] = (aj−1 ~ ḡ)[2k − 1]

(20)

with h̄[k] = h[−k], ḡ[k] = g[−k], k = 1, . . . , 2−jK and
j = 1, . . . , J ≤ log2(K). (h, g) is a pair of quadratic mirror
filters, (aj , dj) are respectively the scale and detail coefficients
of f [k] = a0[k]. For 2D images, the FWT algorithm is
derived from 2D separable wavelet functions along the lines
and columns of the image [38].

The FWT used in this work, is an orthonormal (dyadic)
multi-resolution analysis that conserves an unchanged global
number of samples. The FWT is not shift invariant, but this
particular property is not important for the BSS problem we
are dealing with.

The wavelet transform presents several properties of great
importance in signal processing. The first one we will be
interested with is:
P1. Linearity and Inversibility: the wavelet transform is a lin-

ear and invertible transform, more over, it is orthonormal.
This property is essential, since it implies that linear problems
described by x1,...,K = K. s1,...,K + ε1,...,K , where K is a
linear operator (convolution or point wise operator), can be
equivalently described in the transform domain as wλ

x =
W†KWwλ

s + wλ
ε = K′. wλ

s + wλ
ε , where W is the wavelet

transform operator (W† is the adjoint), wλ
x is the λth =

(j, kj) wavelet coefficient of x1,...,K . The instantaneous and
linear BSS problem of equation (1) can thus be equivalently
described in the wavelet domain by:

wλ
x = Awλ

s + wλ
ε , λ = (j, kj) (21)

for j = 1, . . . , J and kj = 1, . . . , 2−jK, or in a matrix
form Wx = AWs + Wε. In this last equation, the index
λ means that the BSS of equation (1) is rewritten in each
wavelet sub-band. Rewriting now the joint posterior (9) as
given by equation (22), where we will infer, from now on, on
the wavelet coefficients of the unobservable sources Ws rather
than on the sources S themselves. The prior distributions of
the noise variance and the mixing matrix have been already
defined in sections III-A and III-B.

B. Wavelet domain prior models and π(Ws|θs)

A second property of the wavelet transform that is the basis
of the wavelet based compression algorithms (JPEG2000 [39])
and signal approximation [40] of piecewise regular signals2 is:

2such signals are said to belong to the Besov space.
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p(Ws,A,Rε,θ|Wx) ∝ p(Wx|A,Ws,Rε) π(Ws|θs)π(A|θA)π(Rε|θε)π(θs) , (22)

P2. Locality and Compression: a wavelet atom is localized
both in time and frequency, the wavelet coefficients
contain local information of the signals: the wavelet
transform of a wide class of signals is parsimonious.

In other words, it states that many signals can be well
approximated by a small number of their wavelet coefficients.
This parsimonious property can be statistically modeled by
centered, peaky and heavy tailed distributions.

One such possible prior model is the generalized exponen-
tial family (gpG) [38], [22] given by equation (15). This par-
ticular model allowed to establish close connections between
wavelet hard/soft thresholding [41] and Bayesian estimation
[21], [22], [23]. However the gpG prior model results in non
linear optimization problems which are not trivial.

A second possible prior model proposed by Crouse et al. in
[20] is a two Gaussians mixture prior distribution:

p
(

wλ
s |pL, τL, τH

)

= pLN (wλ
s |0, τL) + (1 − pL)N (wλ

s |0, τH), (23)

with τL << τH , where pL = Prob{wavelet coefficient ∈ Low
energy state}, and pH = 1−pL = Prob{wavelet coefficient ∈
High energy state}. Note that the set {τL, τH , pL} is proper
to each sub-band.

The two Gaussians mixture model presents the advantages
of modeling efficiently the wavelet coefficients with only
three parameters (pL, τL, τH) as compared to the direct space
Gaussians mixture model parametrized by (3L−1) parameters
(pl

′s, µl
′s, τl′s).

C. Independent Gaussians mixture model (IGM)

Based on the locality property (P2), the wavelet coefficients
are often considered independent within and across scales,
leading to simple but fairly efficient algorithms:

p(zΛ) =
∏

j

∏

kj

p(zλ = q), λ = (j, kj), (24a)

p(wΛ
s |zΛ) =

∏

j

∏

kj

p(wλ
s |zλ = q)

=
∏

λ

N (wλ
s |0, τq) (24b)

with q ∈ {L,H} and Λ = ∪1
j=J{j; kj = 1, . . . , 2−jK}. In

Bayesian estimation, we need mainly to write the posterior dis-
tribution p

(

zλ = q|wλ
s , pq

)

, where pq = p(zλ = q). Appendix
A describes a Gibbs based MCMC algorithm for sampling
the hidden variables zλ for the IGM model and the associated
parameter pq.

Notations

In order to go further in the description of the two following
prior models, some notations have to be fixed in conjunction
with Fig. 1:

1) wλ
θ denotes the kth

j wavelet coefficient of θk=1,...,K at
resolution j, with λ = (j, kj) where j = 1, . . . , J and
kj = 1, . . . , 2−jK represents a given node on the graph.
zλ denotes a binary random variable associated to wλ

θ .
2) T(J,kJ) denotes the likelihood wavelet tree from the root

node (J, kJ ) to the leaf nodes (1, k1
′s). Tλ denotes the

likelihood wavelet subtree from the node λ = (j, kj)
down to its leaves. T\λ denotes the likelihood wavelet
subtree from root nodes λ = (J,KJ) down to λ =
(j + 1, kj+1).

3) Cλ denotes the set of the direct descendant nodes (chil-
dren) of node λ, Pλ its direct ascendant (parent) node
and νλ the set of its neighboring nodes (in this work we
consider only a first order neighboring system).

D. Hidden Markov tree model (HMT)

The main limitations of the IGM model, presented earlier, is
that it lacks local correlations. Crouse et al. in [20] proposed
a novel model in order to account for inter scale correlations
based on an additional property of the wavelet coefficients:
P3. Persistence: the wavelet coefficients propagates across

scales.
A homogeneous Markov chain model is then defined to
statistically describe this particular property:

p(zλ = q) =
∑

q′

p(zλ = q|zPλ
= q′) p(zPλ

= q′) ,

=
∑

q′

πq′q p(zPλ
= q′) (25)

with {q, q′} ∈ {L,H}. πq′q is the transition probability from
the parent node Pλ to the node λ. The likelihood function of
the sources wavelet coefficients is similarly given by equation
(24b). Appendix B.1 and B.2 detail two possible MCMC
algorithms for sampling the HMT variables:

• global updating (Appendix B.1): describes an iterative
method based on the forward backward formula [42]
designed to determine posterior marginals of the hidden
variables for 1D Markov chains. The forward and back-
ward equations are rewritten for the quad tree model of
Fig. 1 and sampling distributions are detailed.

• local updating (Appendix B.2): describes a Gibbs type
sampling algorithm based on a procedure proposed in
[25] to sample 1D Markov chains hidden variables from
posterior conditionals. These equations have been also
rewritten to match the quad tree representation of Fig. 1.

E. Contextual hidden Markov field model (CHMF)

A fourth property of the wavelet coefficients in conjunction
with the aforementioned properties, allow us to propose a
contextual hidden Markov field (CHMF) model for the wavelet
coefficients in order to jointly account for inter and intra scale
correlations.
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P4. Clustering: the wavelet coefficients are locally correlated:
if a wavelet coefficient is large/small, then its neighboring
coefficients are likely to be large/small.

Intra and inter scale correlation can be statistically described
by:

π(zλ = q|zνλ
, zCλ

)

∝ exp

(

β1

∑

r∈νλ

δ(zr=q) + β2

∑

r∈Cλ

δ(zr=q)

)

, (26)

where β1, β2 are some predefined constants. The likelihood
function is similarly given by equation (24b). This model, in
contrast to the HMT model of section IV-D, links a given
node λ = (j, kj) to its direct descendants (children) Cλ =
⋃

kj−1∈Cλ
{(j − 1, kj−1)}, allowing efficient estimates of the

model parameters at the finest resolution with K1 = K/2
data samples. The CHMF model defined on discrete variables
having only two states (binary random variables) is commonly
known as the Ising model. Appendix C details the Gibbs based
MCMC algorithm for sampling the CHMF hidden variables.

V. WAVELET BASED BAYES-BSS AND MCMC SAMPLING

Now that we have properly defined appropriate prior models
(prior distributions) for the wavelet coefficients, the posterior
distribution of equation (22) is rewritten as in equation (27),
where the introduced (hidden) variable Z and its correspond-
ing prior π(Z|θs) have been defined in sections IV-C, IV-
D and IV-E and the prior distribution π(Ws|Z,θs) is given
by equation (24b). Markov Chain Monte Carlo methods will
allow us to generate samples from the posterior (27) and then
estimate the posterior mean by its corresponding empirical
mean. A Gibbs sampler, as described below:

At iteration t:

Zt ∼ p
(

Z|Wx,A
t−1,Rt−1

ε ,θt−1
s

)

,

W t
s ∼ p

(

Ws|Wx,Z
t,At−1,Rt−1

ε ,θt−1
s

)

,
At ∼ p

(

A|Wx,W
t
s ,R

t−1
ε ,θA

)

,
Rt

ε ∼ p(Rε|Wx,W
t
s ,A

t,θε) ,
θt
s ∼ p(θs|W t

s ,Z
t)

(A1)

allows to generate samples from the respective conditional dis-
tributions. The expressions of these conditionals are detailed
in the following.

A. Conditional distribution of the label variables Z

The conditional distribution of Z is given by:

p
(

zλ = q|wλ
x ,θ

)

∝ N (wλ
x |0,Rx|z)π(zλ = q|θs) , (28)

where λ = (j, kj). The vector zλ = [z
(1)
λ , . . . , z

(n)
λ ] denotes

the vector of the label variables at node λ of each source
(number of sources is n). The vector q denotes all the possible
states (2n states) that zλ can take and π(zλ = q|θs) =
∏n

i=1 π
(

z
(i)
λ = q(i)|θs

)

. The expression of π
(

z
(i)
λ = q(i)|θs

)

is proper to each model. Detailed expressions of the sampling
distributions are given in the Appendix. The matrix Rx|z =

ARzA
′ + Rε where Rz = diag

(

τ
(1)
q , . . . , τ

(n)
q

)

, τ (i)
q being

the qth Gaussian variance of wavelet coefficients of source i
at resolution j.

B. Conditional distribution of the sources wavelet coefficients
Ws

The conditional distribution of the wavelet coefficients of
the sources is given by:

p
(

wλ
s |w

λ
x ,A, zλ,θs

)

∝ N (wλ
x |Awλ

s ,Rε)N (wλ
s |0,Rz)

∝ N (wλ
s |µs|z,Rs|z), (29)

where Rs|z =
(

A′R−1
ε A + R−1

z

)−1
and µs|z =

Rs|zA
′R−1

ε wλ
x .

C. Conditional distribution of the mixing matrix A

The conditional distribution of A is given by:

p(Vect (A)|Wx,Ws,θA)

∝ p(Wx|A,Ws,Rε)π(Vect (A)|θA) ,

∝ N (µA|S ,RA|S), (30)

where RA|S =
(

R−1
ε ⊗ Css +

�
m ⊗ RA

−1
)−1

, µA|S =

RA|S
((

R−1
ε ⊗

�
n

)

Vect
[

(
]

Cxs) + µA

)

, Css = WsW
†
s and

Cxs = WxW †
s , and Vect

[

(
]

.) is a row-wise column vector-
ization defined as:

Vect

([ a1,1 . . . a1,n
...

. . .
...

am,1 . . . am,n

])

= [a1,1, a1,2, . . . , am,n]′

D. Conditional distribution of the scale parameters (Rε, τ
(i)
q )

The scale parameters represent actually the noise variances
Rε = diag

(

σ2
ε,1, . . . , σ

2
ε,m

)

and the sources wavelet coef-

ficients variances {τ
(1)
q , . . . , τ

(n)
q }, with q ∈ {L,H}. Their

respective conditional distributions are given by equation (31)
and (32).

VI. BERNOULLI GAUSSIAN MODEL: JOINT SEPARATION

AND DENOISING

In order to achieve efficient separation in the case of high
noisy observations, additional prior information has to be
considered: A wide class of signals can be well approximated
by only a few number of their wavelet coefficients. Connections
between hard/soft thresholding and Bayesian estimation have
been established in [21], [24], [22] for generalized p-Gaussian
(gpG) priors and for the Bernoulli-Gaussian (BG) priors in
[23]. The BG is in fact a limiting case of the two Gaussians
mixture:

πBG(ws) = lim
τL→0

[pLN (ws|0, τL) + pHN (ws|0, τH)]

= pLδ(ws) + pHN (ws|0, τH), (33)

with τH >> 0, δ(.) is the usual delta function. The MAP
(Maximum A Posteriori) estimator in the case of a two Gaus-
sians mixture prior model for a simple denoising problem:
wλ

x = wλ
s + wλ

ε , is given by:

ŵλ
s|z =

{

σ̂2
L/σ

2
ε w

λ
x , for zλ = L,

σ̂2
H/σ

2
ε w

λ
x , for zλ = H

(34)
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p(Ws,A,Rε,θ,Z|Wx) ∝ p(Wx|A,Ws,Rε)π(Ws|Z,θs)π(Z|θs) π(A|θA)π(Rε|θε) π(θs) , (27)

p
(

σ2
ε,i|Wxi

, [AWs]i
)

∝ p
(

Wxi
|[AWs]i, σ

2
ε,i

)

π
(

σ2
ε,i

)

∝

(

∏

λ

N (wλ
xi
|[Awλ

s ]i, σ
2
ε,i)

)

G−1
(

σ2
ε,i|ν0, θ0

)

,

∝ G−1(νε, θε) , i = 1, . . . ,m (31)

where νε = K/2 + ν0, and

θ−1
ε =

1

2

∑

λ

(

wλ
xi

−
[

Awλ
s

]

i

)2
+ θ−1

0 .

p
(

τ (i)
q |Wsi

, z
(i)
λ = q

)

∝ p
(

Wsi
|z

(i)
λ = q, τ (i)

q

)

π
(

τ (i)
q

)

∝







∏

λ|z(i)
λ

=q

N (wλ
si
|0, τ (i)

q )






G−1

(

τ (i)
q |ν0, θ0

)

,

∝ G−1
(

τ (i)
q |νs, θs

)

, i = 1, . . . , n (32)

where νs = Kj/2 + ν0, and

θ−1
s =

1

2

∑

λ|z(i)
λ

=q

[

wλ
si

]2
+ θ−1

0 .

with 1/σ̂2
L|H = 1/τL|H+1/σ2

ε . It defines, in a general manner,
a nonlinear function of the data. For the BG prior model, the
MAP estimator (34) rewrites:

ŵλ
s|z =

{

0, for zλ = L,
σ̂2

H/σ
2
ε w

λ
x , for zλ = H (35)

defining clearly a hard thresholding rule. Therefore, in the
presence of highly noisy observations, a BG prior model is
adopted in order to perform joint source separation and de-
noising: the hidden variables zλ are a posteriori sampled from
their posterior probabilities, however only the high energy
wavelet coefficients of the unknown sources (corresponding to
zλ = H) are sampled from their conditional posteriors while
the low energy coefficients (corresponding to zλ = L) are set
to zero. The presented models (IGM, HMT and CHMF) are
equivalently described in that case and no modifications are
needed for posterior sampling procedures of the high energy
coefficients.

VII. SIMULATION EXAMPLES

In order to highlight the performances of the proposed
approach, simulation examples have been performed with data
sets having different statistical characteristics. The data are sets
of 256× 256 gray scale pixel images.

For each example, the observations are decomposed on
the “Symmlet” wavelets with 6 vanishing moments (these
wavelets are highly symmetrical). The (256 × 256) observed
images are decomposed up to the 3rd scale (resulting, at the
coarsest resolution, to (8 × 8) scale pixel images = 64 data
samples which seems to be a good compromise for estimation
purposes at lower resolutions). For the simulation results, the
Markov Chain Monte Carlo runs are given a sufficient running
time in order to reach convergence (convergence in law, i.e.

the samples are, at convergence, generated from the stationary
posterior distribution of equation (27)).

As an indication of performance, we give the performance
index (PI) defined in [43] and the correlation coefficient matrix
defined by:

ρ(x,y)[i, j] =
< x[i],y[j] >

√

‖x[i]‖2 . ‖y[j]‖2

(36)

where < ., . > is the usual scalar product and ‖.‖2 is
the L2 norm. The diagonal elements of this matrix mea-
sures the correlation coefficient between the estimates to
the original sources (ideally equal to unity), while the
off-diagonal elements measures the inter-correlation coeffi-
cients (not necessarily equal to zero). Table I summarizes
the values of this matrix for the three presented exam-
ples of Fig. 2, Fig. 5 and Fig. 7. The obtained results
are compared to a time structure ICA based algorithm:
the TDSEP algorithm presented in [9] and available at
“http://wwwold.first.fhg.de/∼ziehe/download.html”.

In a first example (Fig. 2-a), two synthetic images have been
considered and two mixtures (Fig. 2-b) have been generated
with a mixing matrix A = [[1, .5]; [.5, 1]]. A Gaussian noise
have been added to the observations so that the signal to noise
ratio (SNR) is approximately equal to 20dB. The resulting
estimates obtained with the TDSEP algorithm are presented
in Fig. 2-c while those obtained with the proposed approach
are presented in Fig. 3 with the three different estimates
corresponding to the three presented prior models: the IGM
model presents better performances in terms of Performance
Index (PI), however it presents lower performances in terms
of the chosen distance (correlation coefficient ρ). We point
out to the fact that the IGM model needed, for this simulated
example, much more iterations (about twice) than those needed
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by the other prior models (HMT and CHMF) to get to the
desired solution.

The TDSEP algorithm fails to separate properly the orig-
inal sources since it aims to find, diagonalizing jointly time
structure correlation matrices, maximally independent sources.
However, the original estimates are not independent as in-
dicated by the inter-correlation coefficient of source 1 with
respect to source 2.

On Fig. 4, we present portions of images (64 × 64 pixel
portions) corresponding to the estimates obtained in this
simulation example with the prior models, and give as an
indication the correlation coefficients of these small portions
with respect to the original image. We note that the presented
images have been rescaled to be in [0, 1] for presentation
purposes. We clearly observe from the figure that the IGM
model performs less in terms of edge preservation (as expected
from its mathematical description). We also note that the
CHMF model outperforms the HMT model (as indicated by
the correlation coefficient ρ).

In a second example, two sources (Fig. 5-a) have been
considered, both presenting similar geometrical shapes. A
mixing matrix of the form A = [[1, .8]; [.8, 1]] have been
used to generate the observations with a signal to noise ratio of
SNR = 15dB (Fig. 5-b). The results obtained with the TDSEP
algorithm are represented in figure 5-c: though it succeeds to
separate the sources, it presents an unpleasant drawback, it
amplifies the noise present in the observations, thus it needs
an additional denoising procedure. However it shows that this
ICA based algorithm is robust to Gaussian noise (returns a
good estimation of the mixing matrix: PI = −9.48 dB) which
is generally a property of ICA based algorithms [4].

The results obtained with the three prior models (IGM,
HMT and CHMF) are respectively presented in Fig. 5-{a,b,c}.
The IGM model presents similar behavior in this example as
in the previous example: it needs much more iterations to
reach convergence (in Markov Chain Monte Carlo algorithms,
the convergence is a convergence in law). The estimates
corresponding to the HMT and CHMF prior models present
better performances than the TDSEP algorithm, especially in
terms of signal to noise ratio in the final estimates.

A. Joint Separation and Denoising example

In order to highlight the performances of the joint denoising
and separation procedure expressed by the BG-prior model
(section VI), a third example have been considered (Fig. 7-a)
where two observations (Fig. 7-b) have been generated with
a square mixing matrix A = [[1, .8]; [.5, 1]] and a relatively
low signal to noise ratio (SNR = 7dB). The results obtained by
the TDSEP algorithm are shown on Fig. 7-c: this shows once
again the robustness of ICA-algorithms to Gaussian noise, but
in the opposite their weakness in estimating the sources and
the bothering noise amplification effect.

Simulation results obtained by the prior models (IGM, HMT
and CHMF) with the Bernoulli-Gaussian mixture prior are
respectively represented on Fig. 8-{a,b} and -c: the IGM
model performs well, however it has as the unpleasant effect
to smoothen the final estimates (for a comparison on the edge

preservation of each of the three models, see Fig. 4). The
HMT model reaches poorer performances (in terms of PI
and ρ) while the CHMF reaches better performances in terms
of the correlation distance ρ than the two other models, but
presents poorer performances than the IGM model in terms of
performance index PI.

B. Choice of Wavelet basis

A second set of simulations have been done on the three
data sets: but this time the observations have been decomposed
on the the “Daubechies” wavelets with 3 vanishing moments
(they are highly assymetrical but with minimal support). On
Fig. 9, 10 and Fig. 11, we present the box-plots of the obtained
estimates with the three prior models (IGM, HTM and CHMF)
for the data set 1 (text image), 2 (rice images) and data
set 3 (aerial images) respectively compared to the estimation
results obtained with “Symmlet” wavelet basis: the estimates
we obtain on these data sets do not crucially depend on the
choice of the wavelet basis. This is quite expected since the
parameters of the prior laws (variances and weights of two
Gaussians mixture prior) are estimated within the algorithms
and what is really important is rather the sparsity property of
the wavelet representation.

C. CHMF prior parameters values β1 and β2

We have experimentally observed, on the data sets presented
(and others) that, at high signal to noise ratios, the estimates do
not significantly change as function of these two parameters
as long as β1 ∈ [.4, .8] ≥ β2 ∈ [.4, .8]. We recall that
β1 controls the intra scale correlations while β2 controls
the inter scale correlations in the CHMF model presented
in section IV-E. However at lower signal to ratio ratios the
estimates depend sensitively on the values they are given: this
is expected because the likelihood at low signal to noise rations
is less informative and then the prior parameters play a more
significant role.

D. HMT-global updating vs. HMT-local updating

In the data sets we considered, we have observed that the
obtained estimates in the case of the HMT prior model with
its global updating version are very similar to those obtained
with HMT prior model with its local updating version, so
we present in the simulations only those corresponding to
the HTM-global updating version. A discussion and a com-
parison of the two versions on 1D Markov chain examples
is given in [25] without a definite answer on their relative
performances. However for the prior transition probabilities
(transition probability from a coefficient to its children πq′q

in equation 25), a transition probability matrix of the form
[[3/4, 1/4], [1/4, 3/4]] has been chosen. Recalling that this
transition probabilities are being updated by the likelihood of
the data (so we expect that they do play an important role in
low signal to noise ratios).
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VIII. CONCLUSION

In this paper we addressed the problem of blind source
separation of linear and instantaneous noisy mixtures in a
Bayesian estimation framework. We addressed the problem in
the wavelet domain, that allowed to define appropriate prior
models for the wavelet coefficients of the unobserved sources.
We considered three models:

• Independent Gaussian Mixture model (IGM), which does
not account neither for inter nor intra scale correlations,

• Hidden Markov Tree model (HMT) that accounts for inter
scale correlations,

• Contextual Hidden Markov Field model (CHMF) that
accounts for both intra and inter-scale correlations.

In our knowledge, even if these models have been used for
image denoising or restoration, they have not yet been used
in blind source separation, which is the main contribution of
this paper.

Simulations have been performed on a set of images and
the results were reported and compared to a classical time
structure ICA method (the TDSEP algorithm), where we have
seen that the wavelet based Bayesian source separation (Bayes-
BSS) approach presented in this paper outperforms the ICA-
based method for the data sets considered herein. However
ICA methods are known to be very fast methods as compared
to MCMC sampling based approaches. Approximations of
the posterior distributions and suboptimal methods can be
considered in order to implement faster solutions by this
approach.

A limiting case of the original two Gaussian mixture model
was considered, the Bernoulli-Gaussian (BG) mixture model,
in order to be able to perform a joint separation and denoising
of observations affected by a high noise level. Simulation
results that have been reported showed that this approach
seems to be promising.

Accounting for inter and intra scale correlations through
a Contextual Hidden Markov Field (CHMF) model improves
clearly the estimation results of the source images, particularly
at low signal to noise ratios, in terms of image discontinuities
and edge preservation. However, a work is still to be done
on the optimal choice of the Hidden Markov Field constants
(β1, β2).

APPENDIX

In this appendix, we will detail the sampling distribution
(28), which in this case rewrites:

p
(

zλ = q|wλ
x ,θ

)

∝ N (wλ
x |0,Rx|z)π(zλ = q|θs)

∝ N (wλ
x |0,Rx|z)

∏

i

π
(

z
(i)
λ = q(i)|θs

)

(37)

where Rx|z is given in section V-A and q(i) ∈ {L,H}.

A. Sampling distribution of the IGM model (section IV-C)

For the IGM model, the conditional prior3 π(zλ = q|θs) are
in fact the prior weights of equation (23):

π(zλ = q|θs) = pq (A.1)

The conditional sampling distribution of [pL, pH ] is given
by:

p
(

pL, pH |z1,...,Kj

)

∝ p
(

z1,...,Kj
|pL, pH

)

π(pL, pH) ,

∝





Kj
∏

kj=1

p(zλ|pL, pH)



D (uL, uH) ,

∝ D (γL, γH) , (A.2)

where λ = (j, kj), γL = Card{zλ = L, for kj = 1, . . . ,Kj}
and D (pL, pH |uL, uH) ∝ puL−1

L puH−1
H .

B. Sampling distribution of the HMT variables (section IV-D)

In equation (37), q is the vector of all the possible com-
binations of q = {q(1), . . . , q(n)} ∈ {1, . . . , 2n} and equation
(37) can be rewritten:

p
(

z̃λ = q|wλ
x , θ
)

∝ N (wλ
x |0,Rx|z)π(z̃λ = q|θs)

∝ fq(wλ)π(z̃λ = q|θs) .

In the following, posterior sampling distributions for z̃ ∈
{1, . . . , 2n} will be given, the inverse transform to obtain
zλ = [z

(1)
λ , . . . , z

(n)
λ ] is trivial. For the HMT model, two

sampling scheme of the hidden variables are possible:
1) Global updating: Let πqq′ = p(z̃Cλ

= q′|z̃λ = q).

For λ =
(

2, {1, . . . ,K2}
)

, . . . ,
(

J, {1, . . . ,KJ}
)

, the

backward variables βλ(q) are iteratively given by:

βλ(q) = p(TCλ
|z̃λ = q)

=
∑

z̃Cλ

p(TCλ
|z̃Cλ

) p(z̃Cλ
|z̃λ = q) ,

=
∑

z̃Cλ

p(TCCλ
|z̃Cλ

) p(wCλ
|z̃Cλ

) p(z̃Cλ
|z̃λ = q)

(B.1.1)

since

p(TCCλ
|z̃Cλ

) =
∏

r∈Cλ

p(TCr
|z̃r = qr) =

∏

r∈Cλ

βr(qr),

p(wCλ
|z̃Cλ

) =
∏

r∈Cλ

p(wr|z̃r = qr) =
∏

r∈Cλ

fqr
(wr) ,

p(z̃Cλ
|z̃λ = q) =

∏

r∈Cλ

p(z̃r = qr|z̃λ = q) =
∏

r∈Cλ

πqqr
,

then

βλ(q) =
∏

r∈Cλ

(

∑

qr

βr(qr)fqr
(wr)πqqr

)

. (B.1.2)

β(1,.)(q) = 1, ∀q ∈ {1, . . . , 2n}.

3The index (i) is dropped to alleviate the notations.
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For λ =
(

J, {1, . . . ,KJ}
)

, the forward variables αλ(q) at
the lowest resolution are given by:

αλ(q) = p(wλ, z̃λ = q) = fq(wλ) pq . (B.1.3)

and the marginal probabilities γλ(q) are then given by:

γλ(q) = p
(

z̃λ = q|T(J,KJ)

)

=
αλ(q)βλ(q)

∑

q αλ(q)βλ(q)
. (B.1.4)

We have then, iteratively, for λ =
(

J − 1, {1

, . . . ,K(J−1)}
)

, . . . ,
(

1, {1, . . . ,K1}
)

:

p
(

z̃λ = q|z̃J,...,j+1, T\λ

)

∝ fq(wλ) p(TCλ
|z̃λ) π(z̃λ = q|z̃Pλ

= q′) ,

∝ fq(wλ)βλ(q)πq′q . (B.1.5)

2) Local updating: For λ =
(

J, {1, . . . ,KJ}
)

:

p
(

z̃λ = q|T(J,KJ), z̃Λ\λ

)

∝ p
(

T(J,KJ)|z̃Λ
)

p
(

z̃Λ\λ|z̃λ = q
)

π(z̃λ = q) ,

∝ fq(wλ) p(z̃Cλ
|z̃λ = q) pq ,

∝ fq(wλ)

[

∏

r∈Cλ

p(z̃r = qr|z̃λ = q)

]

pq

∝ fq(wλ)

[

∏

r∈Cλ

πqqr

]

pq . (B.2.1)

For λ =
(

J − 1, {1,. . . ,KJ−1})
)

,. . . ,
(

2, {1,. . . ,K2}
)

:

p
(

z̃λ = q|T(J,KJ), z̃Λ\λ

)

∝ p
(

T(J,KJ)|z̃Λ
)

p
(

z̃Λ\λ|z̃λ = q
)

,

∝ p(wλ|z̃λ = q) p(z̃λ = q|z̃Pλ
= q′) p(z̃Cλ

|z̃λ = q) ,

∝ fq(wλ)p(z̃λ = q|z̃Pλ
= q′)

×

[

∏

r∈Cλ

p(z̃r = qr|z̃λ = q)

]

,

∝ fq(wλ)πq′q

[

∏

r∈Cλ

πqqr

]

. (B.2.2)

For λ =
(

1, {1, . . . ,K1}
)

:

p
(

z̃λ = q|T(J,KJ), z̃Λ\λ

)

∝ p
(

T(J,KJ)|z̃Λ
)

p
(

z̃Λ\λ|z̃λ = q
)

,

∝ p(wλ|z̃λ = q) p(z̃λ = q|z̃Pλ
= q′) ,

∝ fq(wλ)πq′q . (B.2.3)
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C. Sampling distribution of the CHMF variables (section IV-E)
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Fig. 1. Binary tree representation of the wavelet coefficients for 1D signal
wavelet decomposition: • Wavelet coefficients, ◦ Associated hidden variables
(corresponding to a quad tree for 2D signals).

a b c
Fig. 2. a) original sources: ρ(s,s)[1, 2] = 0.2225, b) mixture images:
ρ(x,x)[1, 2] = 0.8271, A = [[1, .5]; [.5, 1]] and SNR = 20dB, c) estimated
sources with the TDSEP algorithm with 4 time lag correlation matrices:
PIdB = −9.0437 and ρ(ŝ,ŝ)[1, 2] = −0.1381
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X1 X2 TDSEP IGM HGMTgu HGMF
ρ(,s)[, 1]
ρ(,s)[, 2]

0.9163 0.6286
0.5341 0.8625

0.9447 -0.1365
0.3413 0.7985

0.9835 0.2331
0.2296 0.9728

0.9888 0.2629
0.2507 0.9835

0.9900 0.2611
0.2579 0.9854

ρ(,s)[, 1]
ρ(,s)[, 2]

0.8077 0.6840
0.4964 0.6707

0.5812 0.1477
-0.1302 0.6633

0.9663 0.0638
-0.0102 0.9552

0.9642 -0.0431
0.0342 0.9468

0.9675 -0.0124
0.0716 0.9553

ρ(,s)[, 1]
ρ(,s)[, 2]

0.6213 0.3072
0.3816 0.5973

0.5045 -0.0901
0.0437 0.4046

0.8510 -0.0503
-0.1301 0.9481

0.7930 0.0799
-0.3615 0.9253

0.8314 0.0017
-0.2273 0.9350

TABLE I

TABLE SUMMARIZING THE PERFORMANCES FOR THE THREE SIMULATION EXAMPLES PRESENTED IN FIG. 3 (TOP ROW), FIG. 6 (MIDDLE ROW) AND FIG.

8 (BOTTOM ROW)

a b c
Fig. 3. estimated sources corresponding to the: a) IGM model: PIdB =
−52.3816 and ρ(ŝ,ŝ) = 0.2224, b) HMT (-global updating) model: PIdB =
−29.1059 and ρ(ŝ,ŝ)[1, 2] = 0.2813, c) CHMF (β1 = β2 = .5) model:
PIdB = −27.0361 and ρ(ŝ,ŝ)[1, 2] = 0.2877

a b c d
Fig. 4. a) enlargement of (gray rescaled )-regions (64 × 64 pixels) of
the: a) source image of Fig. 2-a (top), b) IGM-estimated image of Fig.
3-a (top): ρ(ŝ,s)[1, 1] = 0.9451, c) HMT-estimated image of Fig. 3-b
(top): ρ(ŝ,s)[1, 1] = 0.9685, d) CHMF-estimated image of Fig. 3-c (top):
ρ(ŝ,s)[1, 1] = 0.9708.

a b c
Fig. 5. a) original sources: ρ(s,s)[1, 2] = −0.0278, b) mixture images:
ρ(x,x)[1, 2] = 0.9108, A = [[1, .8]; [.8, 1]] and SNR = 15dB, c) estimated
sources with the TDSEP algorithm with 4 time lag correlation matrices:
PIdB = −9.4850 and ρ(ŝ,ŝ)[1, 2] = −0.5631

a b c
Fig. 6. estimated sources corresponding to the: a) IGM model: PIdB =
−22.4201 and ρ(ŝ,ŝ) = 0.0165, b) HMT (-global updating) model: PIdB =
−22.4109 and ρ(ŝ,ŝ)[1, 2] = −0.0555, c) CHMF (β1 = β2 = .5) model:
PIdB = −25.2147 and ρ(ŝ,ŝ)[1, 2] = −0.0255
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a b c
Fig. 7. a) original sources: ρ(s,s)[1, 2] = −0.1117, b) mixture images:
ρ(x,x)[1, 2] = 0.4806, A = [[1, .8]; [.5, 1]] and SNR = 7dB, c) estimated
sources with the TDSEP algorithm with 4 time lag correlation matrices:
PIdB = −11.4810 and ρ(ŝ,ŝ)[1, 2] = −0.6955

a b c
Fig. 8. estimated sources corresponding to the: a) IGM model: PIdB =
−21.9871 and ρ(ŝ,ŝ) = −0.1412, b) HMT (-global updating) model:
PIdB = −9.2129 and ρ(ŝ,ŝ)[1, 2] = −0.2625, c) CHMF (β1 = .7, β2 =
.6) model: PIdB = −15.2715 and ρ(ŝ,ŝ)[1, 2] = −0.2011
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Fig. 9. box-plots of source 1 (left) and source 2 (right) for data set of
Fig. 2 where columns 1 to 7 represent respectively 1) original source; 2)
and 3) IGM-based estimates with “Symmlets-6” wavelets (column 2) and
with “Daubechies-3” wavelets (column 3); 4) and 5) HMT-based estimates
with “Symmlets-6” and “Daubechies-3” respectively; 6) and 7) CHMF-based
estimates with “Symmlets-6” and “Daubechies-3” respectively
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Fig. 10. box-plots of source 1 (left) and source 2 (right) for data set of
Fig. 5 where columns 1 to 7 represent respectively 1) original source; 2)
and 3) IGM-based estimates with “Symmlets-6” wavelets (column 2) and
with “Daubechies-3” wavelets (column 3); 4) and 5) HMT-based estimates
with “Symmlets-6” and “Daubechies-3” respectively; 6) and 7) CHMF-based
estimates with “Symmlets-6” and “Daubechies-3” respectively
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Fig. 11. box-plots of source 1 (left) and source 2 (right) for data set of
Fig. 7 where columns 1 to 7 represent respectively 1) original source; 2)
and 3) IGM-based estimates with “Symmlets-6” wavelets (column 2) and
with “Daubechies-3” wavelets (column 3); 4) and 5) HMT-based estimates
with “Symmlets-6” and “Daubechies-3” respectively; 6) and 7) CHMF-based
estimates with “Symmlets-6” and “Daubechies-3” respectively
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