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ABSTRACT In our work, we are concerned with generalized p-

In this paper we address the problem of Bayesian blind@ussian (gpG) priors for the sources of the form:
source separation with generalizedsaussian priors for the b
sources (also known ds, priors). These kind of priors are mst) Dexg—Ailsy®), 1<p<2 (3)
useful when modeling sparse sources (spiky signals, wavele i . o
coefficients ...) The corresponding posterior laws are nofPr i =1,...,n, with 1(.S) = i 7(st), assuming spatial in-
linear and either maximum a posteriori (MAP) or posteriordependence and time stationarity, @ a scale parameter.
mean estimates are computationally difficult to obtain espeThese priors have been used to model sparse signals, like the
cially for values ofp approaching unity. In this work, we Wwavelet coefficients[6, 9, 3]. However, these kind of priors
consider a mean field approximation approach to approxiPresent some optimization difficulties, especially forues
mate the joint posterior distribution by a separable distri  Of p approaching unity.
tion on its parameters: unobservable sources, mixing ratri A first approximation considered in this paper, relies on
noise covariance matrix and hyper-parameters (source scanean field approaches to BSS[8] in order to approximate the
parameters). joint posterior distribution of the unknowns by a separable
This approach requires, however, marginalisation of th@ne. However it is not an ICA approach as in[8] in the sense
log-likelihood with respect to these parameters. With appr that the approximating distribution of the sources in ngtse
priate prior assignments, this can be done explicitly far th arable, keeping thus the correlation feature of the latter.
mixing matrix, the noise covariance matrix and the scale pasecond approximation is to approach this marginal distribu
rameters. For the sources, we consider a Kullback distand®n by a double exponential one based on the Kullback dis-
based approximation in order to obtain estimates of the firdance. The proposed approach is an alternative solution to
two moments of the sources. Simulation results are pregentéhe Monte Carlo Markov Chain solution considered in[3].

to support the proposed approach. This paper is organized as follows: in section 2 we de-
fine the conjugate priors on the mixing matrix, the noise in-
1. INTRODUCTION verse covariance matrix and the sources scale parameters. |

. . . section 3 we briefly introduce the mean field approach and
Blind source separation (BSS) has emerged as an active arga,, give detailed expressions of the different approiimgat

of research and finds application in various fields of engiy,arginals of the parameters of interest in section 3.1. In 4

neering. It consists mainly in finding a set of unobservable, gmyation example is presented to support the proposed
sources from a set of their linear and instantaneous m‘x'tureapproach and we finally conclude in 5.

formalized by:

2. MIXING MATRIX, NOISE INVERSE
COVARIANCE AND SCALE PARAMETER PRIORS

wherex is anm-column vector of the observed data at timejithout loss of generality, we consider the mixing matrix to
t, st is ann-column vector of the unobserved sources at timg,e Gaussian:

t, A is themx n mixing matrix ande; is the noise vector

where it is assumed in the sequel teat- .4 (0,3¢)L. —

The Bayesian solution toqthe BSS prE)bIer% begins by T(Albn 2a) = A (Ha Za) “)
writing the posterior joint distribution of the unknown pa-  The prior probability of the noise inverse covariance ma-
rameters: the sourceS (= s1.7), the mixing matrix d) and  trix 5, is a Wishart distribution (a generalization of t&
the noise inverse covariance matrk): distribution for positive definite matrices):

p(S,A,Z:| X) 0 p(X|S,A,Z:) (S, A, %) (2)

T =Asi+&, t=1...,T (1)

v—m— 1
M(Ze|v,5) 022 exp(——Tr(Zgzl)) (5)
where p(X|S,A,%Z) is the likelihood function and 2
(S, A,%¢) is the joint prior distribution of the parameters .
where we consider herein a separable prior on these parafherev is the number of degrees of freedomxf and >

eters. An estimate is then defined, generally the maximum i§ & scale matrix. The expected value with respect to this
posteriori or the posterior mean. prior is 2, = vZ. The Wishart prior is a conjugate prior that

will allow us to account, in the BSS model, for a correlated
for convenience, we work witmversecovariance matrices. Gaussian noise in the data.




The scale parameters associated to the solsca® as- 3.1.1 Approximate posterior Ay

signed Gamma priors of the form: The marginal log-likelihood of the mixing matrig(Ay) is

T(Ai|vo, 60) U /\iVO’leXF(*QO)\i)Hm (6) given by:
. . L
ori = en W(Ayv) = 5 ZAJ(ZS@ZS +Z£®Sb31‘) A,

3. THE MEAN FIELD APPROXIMATION TO
SOURCE SEPARATION

The mean field approximation of a posterior distribution ¥ 1| ~nat = _
p(©|Data) of a set of parameter® begins by writing the where{_s.s >q(s) =25 +38 andz, = <Zf>q_(2s)' TheCOI’]JL-J-
Kullback distance between separable approximating dis- gateprior of equation (4) enables us to write the approximate

+ Z(igw 23)" A, (12)

tribution q(®©) = [1; 4i(®i) and that posterior: posterior as Gaussian:
A)= N (A2 13
2clp) = Eqllog | —cte- FalmL) (@) A4 = (A2 (a3
Where<A\,A$>q(A) = Z;l + A Al and:

wheré
g S = Tze®zgl+zzg®§t§3+m
Famt) =~ (logk ) +logl)y @

I qi

~ -1 s ~
A, = X b2 b3
wherelL is the likelihood function andr is a separable prior Y A [Z( e S) + AHA]

of the parameter s@ (the sources, the mixing matrix and the
noise inverse covariance matrix in our BSS problem). Th
objective, now, is to find, maximizing#(q|m,L), a set of
separable approximating distributiogg®;). This is done The marginal log-likelihood of the noise inverse covarinc
alternatively on each parameter conditionally on the ather matrix is given by:

where the solution to that variational problem is given by[7

812 Approximate posterior af;

. T o 1
5]: 5¢) == log|Z —Tr<Z A5 At )—TrZ
6(0) 0 (O exi (@) @ YEI= ol (A5 ) - ((‘f))
where® ¢(6;) = (log L(X|O)>q“ is a function ofo; obtained  \\here
by marginalizing the likelihood function with respect td al . .
the other parameters except Q= Z (zx’+ A35TAT

3.1 Theexpression of Y(©;) for BSS

Under the Gaussian noise assumption, the log-likelihood is i ) o
given by: In a matrix form,@ can be equivalently written:

+(T0sN5 (105) - Asz™—25TAT) (15)

_ PLoeel g
logL(z11|0) glog|25|%Z(mAs)TZ£(mAs) Q=(X-AS)X ~AS) +G(Za",5)

with 3 o
et G(Ex",8)l i = Tr(V{ §5")
T T 4.4 -
=3 log|Ze| — EZS A2 As toIl(i,j) = 1,...,m, whereyy is an-square sub-matrix of
) .
+Y 2z As (10a)
2 A
T 1 So=1 - :
=—log|Ze| - = Al (I s)Z:(Io s) A, A : .o
2 ZZ AR
+ szZs(M@ST)Av (10b)  The log-likelihood (14) needs the evaluation of

<Ai§1AT> . From the following lemma:
whereO stands foiS, A, 2, andAy.,. (10a) and (10b) are two aA)

alternate eXpreSSionS for the |Og-|ike|ih00d function vehe Lemmal LetKl be the mn column vector representation of
we dropped the time indexor convenienceAy is the vector  the mx n matrix Y defined by (11), and let the statistics of
wise representation of a matrix defined by: Y; be given beVYqu _ i;lﬁ-f’vf’v“, then

+ (Y)
Av=[An ;- Am)] (11) .
and® is the kronecker (tensor) product of matrices[1]. <YRYT>q(y) li,j]= Z ZR[k,I]i;l[n(i—l)—i—k,n(j —1)+1]
~ K=11=

2we use the notatiof = (f(8))q=Eq[f(8)] to denote expectation. Sty
31(8r, .80V, = (1(61,--- Bn)g(.1 11,10 = W(O) YY) [i.1]



for (i,j)=1,..., m. _ _ 3.1.4 Approximate posterior of the hyper-parameters
Theny(Ze) given in equation (14) rewrites: a) Scale parametem order to develop an expression for the
1 marginal log-likelihood of the sources scale parameter, we
Y(Ze) = Iog|zg| - Tr(stA(zS DN ,A)) - ETr(ZSQ) first write the log-likelihood:

(16)
whereDy (R,$,*,¥) = (YRY)_ . With the prior de- logm(S|A1n, p) = Z(pTIogAi —Ai Z |3,t|p) (20)
. . . /a(y) . i
fined in (5), the log posterior & is finally given by:
Similar developments as those of equations (7) to (9) yield
logq(e| X, 6) (T+v ; m-1) log|%e| - }Tr(ZgQg) an expression for the log-approximate posterior:
(17) .
whereQ; == 1+ Q + TD (3, %25, A), defining a pos- logq(Ai) = (PT+vo—1)logAi — A (90 + z (Il >q(5)>
teriori a Wishart distribution with a mean matix¢ = (T + (21)
v)Q; L. defining thus a Gamma distribution where the expected value
is given by:
3.1.3 Approximate posterior &
In order to express the marginal log-likelihood of the sestc A = Adgon) = T/p+vo (22)
we first postulate the following: 6o+ 3 (Isi] p)q(s)

Lemma?2 LetY and Z be square symmetric matrices of where the quantity|s t|p> |s approximated by means of
dimensions m and mn respectively, andjiéte a one dimen- monte carlo integration.

sional n-column vector, then b) Power parameteiThe power parametar of the general-
+ ized p-Gaussian (gpG) prior distribution of equation (3) ca
d Tr((Y ®nn )Z) —2F(Y,Z)n be estimated by the method of moments[6]:
a )
! EEEN
where p=F" 2 ; (23)
() (s
m m
(Y,Z) Y[k [(k=D)n+i,(I-1)n+j
Bl kleZl Jnti(=n+ ] whereF (p) = W andrl (.) is the standard Gamma
. function. The absolute momefs|) ) and the second mo-
for (i,j)=1,. ent<52> can be evaluated by thelr empirical estimates
The marglnal Iog -likelihood with respect to the sources 1i(s)
is then given by: or by Monte Carlo integration approximation.
- 1 ~ - 1540 = 4. SIMULATIONS
Wis) = 2'S.As— ETr((zg ® ssT)zAl) — 55145, As

In order to support the proposed approach, two gpG signals
(18) have been generated with power paramefgrs- 1.2 and
p2 = 1.3 resp. A square mixing matrid = [[1,0.8];[0.8,1]]
o Lo L have been considered, and a spatially correlated noise with
whereQ = ATZEAJFF(ZE,Z;l) andv = A'2,z. Withthe  an inverse covariance matrk = [[.13 —.67];[—.67,.13]
gpG prior of equation (3), the log-approximate distribntis ~ has been added to the observations. Figure (1) shows scat-
given by: ter plots of the observed mixtures as function of the origina
sources. As one can expect, the mean field approach depends
1 n on the initialization of its parameters, so all the paramsete

logg(s) = _ESTQS +o's - ,Z’\i|3|ipv 1=p<2 (19  have been initialized to their mean valuet® = i, = }Imn,

= = =% >> I and the sources where initializedhy® =

The two first moments of the sources with respect to this apAS a measure of performance and comparison, we have con-
proximating distribution are not explicitly given, theyesso- ~ sidered the performance index[4] given by:
lutions to non linear multidimensional equations. We con-

sider two approximations of these two quantities: 1) a first < 1 |Bij |2
one based on a Gaussian approximation of the priar, @) PIB=A"A)= > Q12 —®mn1

1
—ESTQS +o's

12
a second one based on the minimization of the Kullback dis- T\T MaA [Bi
tance between the one dimensional Gaussian approximation IBij |2
and the double exponential distribution: +Z Z p— I|JB B -1 (24)
1. logq(s) = logq(s|p=2) = —3s"Qs +v's — s"R, s, 1B

which results iniq =Q+2R) ands= iglv. As a convergence criteria, one would naturally evaluate
2. 5. = VU, the functional given in equation (8) since the objectiveois t

T
Wherez =U'U. “this is equivalent by initializing the sources bA%T A%)-1 A0T X



c d

Figure 1: scatter plots of: (a). mixtubg vs. sources, (b).
X1Vs. S, (€). Xovs. S, (d). Xo vs. S

look for the approximating distribution that maximizessthi
functional. However its evaluation is not so trivial as ieds

explicit expressions of moments with respect to a Wisharﬁ1
a-

prior. So we have choosen, for a stopping criteria, the st

tionnary points of successive differences of the mixing ma
trix norm. In figure (2) scatter plots of the estimated sosrce

as function of the original ones are presented (a diagamal li
is represented to visually evaluate the performancesyr€ig
(3), represents the evolution of the performance indexdPI)
equation (24) through the iterations.

Figure 2: scatter plots of: (a). estimated SOLﬁABQers.Aorig—
inal sourceS;, (b). S vs. S, (€). S vs. S, (d). S vs.
S
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Figure 3: Evolution of the Performance Index (equation)24)
along the iterations (sub figure: zoom of the evolution of the
Pl at the last iterations).

5. CONCLUSION

In this paper, we have considered a mean field approxima-
tion to blind source separation under a Bayesian framework
with Ly priors. These kind of priors are suited for model-
ing sparse signals such as the wavelet coefficients of piece-
wise regular signals. The mean field approach allowed us to
establish a relatively simple but efficient algorithm. A ma-
trix form of the noise covariance prior allowed us to account
in addition, for a spatially correlated Gaussian noise. We
have shown, by a simulation example, that this is approach
quite promising. However, we think that some improve-
ent can be made concerning the approximating distribution
of the sources since the one presented is based on a unidi-

mensional approximation. Even though the presented ap-
proach accounts for observations Gaussian noise (spatiall
correlated), we think that an additional denoising stepukho

be processed on the estimated sources.
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