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ABSTRACT
In this paper we address the problem of Bayesian blind
source separation with generalizedp-Gaussian priors for the
sources (also known asLp priors). These kind of priors are
useful when modeling sparse sources (spiky signals, wavelet
coefficients ...) The corresponding posterior laws are non
linear and either maximum a posteriori (MAP) or posterior
mean estimates are computationally difficult to obtain espe-
cially for values ofp approaching unity. In this work, we
consider a mean field approximation approach to approxi-
mate the joint posterior distribution by a separable distribu-
tion on its parameters: unobservable sources, mixing matrix,
noise covariance matrix and hyper-parameters (source scale
parameters).

This approach requires, however, marginalisation of the
log-likelihood with respect to these parameters. With appro-
priate prior assignments, this can be done explicitly for the
mixing matrix, the noise covariance matrix and the scale pa-
rameters. For the sources, we consider a Kullback distance
based approximation in order to obtain estimates of the first
two moments of the sources. Simulation results are presented
to support the proposed approach.

1. INTRODUCTION

Blind source separation (BSS) has emerged as an active area
of research and finds application in various fields of engi-
neering. It consists mainly in finding a set of unobservable
sources from a set of their linear and instantaneous mixtures,
formalized by:

xt = Ast + εt , t = 1, . . . ,T (1)

wherext is anm-column vector of the observed data at time
t, st is ann-column vector of the unobserved sources at time
t, A is them× n mixing matrix andε t is the noise vector
where it is assumed in the sequel thatεt ∼ N (0,Σε )

1.
The Bayesian solution to the BSS problem begins by

writing the posterior joint distribution of the unknown pa-
rameters: the sources (S = s1:T ), the mixing matrix (A) and
the noise inverse covariance matrix (Σε ):

p(S,A,Σε |X) ∝ p(X|S,A,Σε )π(S,A,Σε) (2)

where p(X|S,A,Σε) is the likelihood function and
π(S,A,Σε ) is the joint prior distribution of the parameters
where we consider herein a separable prior on these param-
eters. An estimate is then defined, generally the maximum a
posteriori or the posterior mean.

1for convenience, we work withinversecovariance matrices.

In our work, we are concerned with generalized p-
Gaussian (gpG) priors for the sources of the form:

π(si,t) ∝ exp(−λi|si,t |p) , 1≤ p < 2 (3)

for i = 1, . . . ,n, with π(S) = ∏i,t π(si,t ), assuming spatial in-
dependence and time stationarity, andλi is a scale parameter.
These priors have been used to model sparse signals, like the
wavelet coefficients[6, 9, 3]. However, these kind of priors
present some optimization difficulties, especially for values
of p approaching unity.

A first approximation considered in this paper, relies on
mean field approaches to BSS[8] in order to approximate the
joint posterior distribution of the unknowns by a separable
one. However it is not an ICA approach as in[8] in the sense
that the approximating distribution of the sources in not sep-
arable, keeping thus the correlation feature of the latter.A
second approximation is to approach this marginal distribu-
tion by a double exponential one based on the Kullback dis-
tance. The proposed approach is an alternative solution to
the Monte Carlo Markov Chain solution considered in[3].

This paper is organized as follows: in section 2 we de-
fine the conjugate priors on the mixing matrix, the noise in-
verse covariance matrix and the sources scale parameters. In
section 3 we briefly introduce the mean field approach and
then give detailed expressions of the different approximating
marginals of the parameters of interest in section 3.1. In 4
a simulation example is presented to support the proposed
approach and we finally conclude in 5.

2. MIXING MATRIX, NOISE INVERSE
COVARIANCE AND SCALE PARAMETER PRIORS

Without loss of generality, we consider the mixing matrix to
be Gaussian:

π(A|µA,ΣA) = N (µA,ΣA) (4)

The prior probability of the noise inverse covariance ma-
trix Σε is a Wishart distribution (a generalization of theχ2

distribution for positive definite matrices):

π(Σε |ν,Σ) ∝ |Σε |
ν−m−1

2 exp

(
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2
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(

Σε Σ−1)
)

(5)

whereν is the number of degrees of freedom ofΣε andΣ
is a scale matrix. The expected value with respect to this
prior is Σ̃ε = νΣ. The Wishart prior is a conjugate prior that
will allow us to account, in the BSS model, for a correlated
Gaussian noise in the data.



The scale parameters associated to the sourcesλi are as-
signed Gamma priors of the form:

π(λi|ν0,θ0) ∝ λ ν0−1
i exp(−θ0λi)IR+ (6)

for i = 1, . . . ,n.

3. THE MEAN FIELD APPROXIMATION TO
SOURCE SEPARATION

The mean field approximation of a posterior distribution
p(Θ|Data) of a set of parametersΘ begins by writing the
Kullback distance between aseparable approximating dis-
tribution q(Θ) = ∏i qi(Θi) and that posterior:

D(q|p) = Eq

[

log
q
p

]

= cte−F(q|π ,L) (7)

where2

F(q|π ,L) = −∑
i

〈

log
qi

πi

〉

qi

+ 〈logL〉q (8)

whereL is the likelihood function andπ is a separable prior
of the parameter setΘ (the sources, the mixing matrix and the
noise inverse covariance matrix in our BSS problem). The
objective, now, is to find, maximizingF(q|π ,L), a set of
separable approximating distributionsqi(Θi). This is done
alternatively on each parameter conditionally on the others,
where the solution to that variational problem is given by[7,
5]:

q̂i(Θi) ∝ πi(Θi)exp(ψ(Θi)) (9)

where3 ψ(Θi) = 〈logL(X|Θ)〉q|i
is a function ofΘi obtained

by marginalizing the likelihood function with respect to all
the other parameters exceptΘi .

3.1 The expression of ψ(Θi) for BSS

Under the Gaussian noise assumption, the log-likelihood is
given by:

logL(x1:T |Θ) =
T
2

log|Σε |−
1
2 ∑

t
(x−As)†Σε (x−As)

+cte

≡T
2

log|Σε |−
1
2 ∑

t
s†A†ΣεAs

+∑
t

x†ΣεAs (10a)

≡T
2

log|Σε |−
1
2 ∑

t
A†

v(I⊗s)Σε(I⊗s†)Av

+∑
t

x†Σε(I⊗s†)Av (10b)

whereΘ stands forS,A,Σε andλ1:n. (10a) and (10b) are two
alternate expressions for the log-likelihood function where
we dropped the time indext for convenience.Av is the vector
wise representation of a matrix defined by:

Av = [A(1,.), . . . ,A(m,.)]
† (11)

and⊗ is the kronecker (tensor) product of matrices[1].

2we use the notatioñf = 〈 f (θ )〉q = Eq[ f (θ )] to denote expectation.
3〈 f (θ1, . . . ,θn)〉q|i

= 〈 f (θ1, . . . ,θn)〉q(...,θi−1,θi+1,...) = ψ(θi)

3.1.1 Approximate posterior ofAv

The marginal log-likelihood of the mixing matrixψ(Av) is
given by:

ψ(Av) = −1
2 ∑

t
A†

v

(

Σ̃ε ⊗ Σ̃−1
s + Σ̃ε ⊗ s̃bs̃†

)

Av

+∑
t

(

Σ̃εx⊗ s̃
)†

Av (12)

where
〈

ss†
〉

q(s) = Σ̃−1
s + s̃s̃† andΣ̃ε = 〈Σε〉q(Σε ). Theconju-

gateprior of equation (4) enables us to write the approximate
posterior as Gaussian:

q(A) = N (Ãv, Σ̃A) (13)

where
〈

AvA
†
v

〉

q(A)
= Σ̃−1

A + ÃvÃ
†
v, and:

Σ̃A = TΣ̃ε ⊗ Σ̃−1
s +∑

t
Σ̃ε ⊗ s̃t s̃

†
t + ΣA,

Ãv = Σ̃−1
A

[

∑
t

(

Σ̃εx⊗ s̃
)

+ ΣAµA

]

3.1.2 Approximate posterior ofΣε

The marginal log-likelihood of the noise inverse covariance
matrix is given by:

ψ(Σε )=
T
2

log|Σε |−
T
2

Tr

(

Σε

〈

AΣ̃−1
s A†

〉

q(A)

)

− 1
2

Tr(ΣεQ)

(14)
where

Q = ∑
t

(

xx† + Ãs̃s̃†Ã†

+(I⊗ s̃†)Σ̃−1
A (I⊗ s̃)− Ãs̃x†−xs̃†Ã†) (15)

In a matrix form,Q can be equivalently written:

Q =(X −AS)(X −AS)† +G(Σ̃−1
A , S̃)

with
G(Σ̃−1

A , S̃)[i, j] = Tr
(

γ i, j
A S̃S̃†

)

for (i, j) = 1, . . . ,m, whereγ i, j
A is a n-square sub-matrix of

Σ̃−1
A :

Σ̃−1
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A
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.. .
...

γm,1
A . . . γm,m

A







The log-likelihood (14) needs the evaluation of
〈

AΣ̃−1
s A†

〉

q(A)
. From the following lemma:

Lemma 1 LetYv be the mn column vector representation of
the m×n matrixY defined by (11), and let the statistics of
Yv be given by

〈

YvY
†

v

〉

q(Y )
= Σ̃−1

y + ỸvỸ
†

v , then

〈

Y RY †〉

q(y)
[i, j] =

n

∑
k=1

n

∑
l=1

R[k, l ]Σ̃−1
y [n(i−1)+k,n( j−1)+ l ]

+
(

Ỹ Ỹ †) [i, j]



for (i, j) = 1, . . . ,m.
Thenψ(Σε ) given in equation (14) rewrites:

ψ(Σε)=
T
2

log|Σε |−
T
2

Tr
(

ΣεDA(Σ̃−1
s , Σ̃−1

A ,Ã)
)

− 1
2

Tr(ΣεQ)

(16)
whereDY (R, Σ̃−1

y , Ỹ ) =
〈

Y RY †
〉

q(y)
. With the prior de-

fined in (5), the log posterior ofΣε is finally given by:

logq(Σε |X,θ ) =
(T + ν −m−1)

2
log|Σε |−

1
2

Tr(ΣεQε)

(17)
whereQε = Σ−1 +Q+TDA(Σ̃−1

s , Σ̃−1
A ,Ã), defining a pos-

teriori a Wishart distribution with a mean matrixΣ̃ε = (T +
ν)Q−1

ε .

3.1.3 Approximate posterior ofS

In order to express the marginal log-likelihood of the sources,
we first postulate the following:

Lemma 2 Let Y and Z be square symmetric matrices of
dimensions m and mn respectively, and letη be a one dimen-
sional n-column vector, then

∂ Tr
(

(Y ⊗ηη†)Z
)

∂η
= 2F (Y ,Z)η

where

Fi, j(Y ,Z) =
m

∑
k=1

m

∑
l=1

Y [k, l ]Z[(k−1)n+ i,(l −1)n+ j]

for (i, j) = 1, . . . ,n.
The marginal log-likelihood with respect to the sources

is then given by:

ψ(s) = x†Σ̃εÃs− 1
2

Tr
(

(Σ̃ε ⊗ss†)Σ̃−1
A

)

− 1
2
s†Ã†Σ̃εÃs

= −1
2
s†Qs+v†s (18)

whereQ = Ã†Σ̃εÃ+F (Σ̃ε , Σ̃
−1
A ) andv = Ã†Σ̃εx. With the

gpG prior of equation (3), the log-approximate distribution is
given by:

logq(s) = −1
2
s†Qs+v†s−

n

∑
i=1

λi |s|pi , 1≤ p < 2 (19)

The two first moments of the sources with respect to this ap-
proximating distribution are not explicitly given, they are so-
lutions to non linear multidimensional equations. We con-
sider two approximations of these two quantities: 1) a first
one based on a Gaussian approximation of the prior ofs; 2)
a second one based on the minimization of the Kullback dis-
tance between the one dimensional Gaussian approximation
and the double exponential distribution:

1. logq̃(s) = logq(s|p = 2) = − 1
2s†Qs+v†s−s†Rλ s,

which results inΣ̃q̃ = Q+2Rλ ands̃ = Σ̃−1
q̃ v.

2. Σ̃s =
√

2U ,
whereΣ̃q̃ = U†U .

3.1.4 Approximate posterior of the hyper-parameters

a) Scale parameter.In order to develop an expression for the
marginal log-likelihood of the sources scale parameter, we
first write the log-likelihood:

logπ(S|λ1:n, p) = ∑
i

(

pT logλi −λi ∑
t
|si,t |p

)

(20)

Similar developments as those of equations (7) to (9) yield
an expression for the log-approximate posterior:

logq(λi) = (pT + ν0−1) logλi −λi

(

θ0 +∑
t
〈|si,t |p〉q(s)

)

(21)
defining thus a Gamma distribution where the expected value
is given by:

λ̃i = 〈λi〉q(λi)
=

T/p+ ν0

θ0 + ∑t 〈|si,t |p〉q(s)

(22)

where the quantity〈|si,t |p〉q(s) is approximated by means of
monte carlo integration.
b) Power parameter.The power parameterp of the general-
ized p-Gaussian (gpG) prior distribution of equation (3) can
be estimated by the method of moments[6]:

p = F−1

(

〈|s|〉2
π(s)

〈s2〉π(s)

)

, (23)

whereF(p) = Γ2(2/p)
Γ(1/p)Γ(3/p) andΓ(.) is the standard Gamma

function. The absolute moment〈|s|〉π(s) and the second mo-

ment
〈

s2
〉

π(s) can be evaluated by their empirical estimates
or by Monte Carlo integration approximation.

4. SIMULATIONS

In order to support the proposed approach, two gpG signals
have been generated with power parametersp1 = 1.2 and
p2 = 1.3 resp. A square mixing matrixA =

[

[1,0.8]; [0.8,1]
]

have been considered, and a spatially correlated noise with
an inverse covariance matrixΣε =

[

[.13,−.67]; [−.67, .13]
]

has been added to the observations. Figure (1) shows scat-
ter plots of the observed mixtures as function of the original
sources. As one can expect, the mean field approach depends
on the initialization of its parameters, so all the parameters
have been initialized to their mean values:A0 = µA = Im,n,
Σ0

ε = Σ >> Im and the sources where initialized by4 S0 = X.
As a measure of performance and comparison, we have con-
sidered the performance index[4] given by:

PI(B = Â−1A) =
1
2

[

∑
i

(

∑
j

|Bi j |2
maxl |Bil |2

−1

)

+∑
j

(

∑
i

|Bi j |2
maxl |Bl j |2

−1

)]

(24)

As a convergence criteria, one would naturally evaluate
the functional given in equation (8) since the objective is to

4this is equivalent by initializing the sources by(A0,†A0)−1A0,†X
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Figure 1: scatter plots of: (a). mixtureX1 vs. sourceS1, (b).
X1 vs. S2, (c). X2 vs. S1, (d). X2 vs. S2

look for the approximating distribution that maximizes this
functional. However its evaluation is not so trivial as it needs
explicit expressions of moments with respect to a Wishart
prior. So we have choosen, for a stopping criteria, the sta-
tionnary points of successive differences of the mixing ma-
trix norm. In figure (2) scatter plots of the estimated sources
as function of the original ones are presented (a diagonal line
is represented to visually evaluate the performances). Figure
(3), represents the evolution of the performance index (PI)of
equation (24) through the iterations.

a b

c d

Figure 2: scatter plots of: (a). estimated sourceŜ1 vs. orig-
inal sourceS1, (b). Ŝ1 vs. S2, (c). Ŝ2 vs. S1, (d). Ŝ2 vs.
S2
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Figure 3: Evolution of the Performance Index (equation (24))
along the iterations (sub figure: zoom of the evolution of the
PI at the last iterations).

5. CONCLUSION

In this paper, we have considered a mean field approxima-
tion to blind source separation under a Bayesian framework
with Lp priors. These kind of priors are suited for model-
ing sparse signals such as the wavelet coefficients of piece-
wise regular signals. The mean field approach allowed us to
establish a relatively simple but efficient algorithm. A ma-
trix form of the noise covariance prior allowed us to account,
in addition, for a spatially correlated Gaussian noise. We
have shown, by a simulation example, that this is approach
is quite promising. However, we think that some improve-
ment can be made concerning the approximating distribution
of the sources since the one presented is based on a unidi-
mensional approximation. Even though the presented ap-
proach accounts for observations Gaussian noise (spatially
correlated), we think that an additional denoising step should
be processed on the estimated sources.
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